We are developing a model for mortality prediction in the intensive care unit (ICU). In the intensive care unit, new data is collected frequently, as many patients are connected to monitors, and clinical care is given at a high rate. This data can help in alerting the stuff for patients who are at higher risk for a complication that needs extra special care. Such models were developed before, but they suffer from biases. One type of bias we want to overcome is the time of prediction. For example, a subject that is critically ill might be “easier” to predict, and if the model learns only on such samples, it will be useless as a real-world application.